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The asymptotic behavior of the energy–momentum tensor for a free quantized scalar
field with massm and curvature couplingξ in de Sitter space is investigated. It is
shown that for an arbitrary, homogeneous, and isotropic, fourth-order adiabatic state for
which the two-point function is infrared finite,〈Tab〉 approaches the Bunch–Davies de
Sitter invariant value at late times ifm2 + ξR > 0. In the casem= ξ = 0, the energy–
momentum tensor approaches the de Sitter invariant Allen–Folacci value for such a state.
For m2 + ξR= 0 butm andξ not separately zero, it is shown that at late times〈Tab〉
grows linearly in terms of cosmic time leading to an instability of de Sitter space. The
asymptotic behavior is again independent of the state of the field. Form2 + ξR < 0, it
is shown that, for most values ofm andξ , 〈Tab〉 grows exponentially in terms of cosmic
time at late times in a state dependent manner.

1. INTRODUCTION

The exponential expansion and maximal symmetry of de Sitter space allow
for the possibility that quantum effects can be important even at late times when
the universe is large. This has been born out by calculations of both the energy–
momentum tensor〈Tab〉 and the quantity〈φ2〉. For example, it has been shown for
free scalar fields that〈φ2〉 has a constant value and〈Tab〉 is equal to a constant times
the metric tensor if the fields are in the de Sitter invariant state, which is sometimes
referred to as the Euclidean vacuum and sometimes referred to as the Bunch–
Davies state (Bunch and Davies, 1978; Chernikov and Tagirov, 1968; Dowker
and Critchley, 1976; Tagirov, 1973). It has also been shown that the quantity〈φ2〉
diverges at late times in de Sitter space ifm2+ ξR≤ 0, with m the mass of the
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field andξ its coupling to the scalar curvatureR (Allen and Folacci, 1987; Linde,
1982; Starobinsky, 1982; Vilenkin and Ford, 1982).

The fact that quantum effects can be significant when the universe is large
means that it is possible for backreaction effects to also be important. In fact, if
certain components of the energy–momentum tensor become too large then de
Sitter space will be unstable. This is because the backreaction of the fields on the
spacetime geometry will cause the expansion rate to cease being exponential. It
is well known that such instabilities occur for certain classical scalar fields in de
Sitter space (Dolgov, 1983; Ford, 1987) and for certain interacting quantized fields
(Ford, 1987). It would seem likely that similar instabilities might occur for free
quantized fields particularly given the divergent behavior exhibited by the quantity
〈φ2〉 in some cases.

Most previous studies of quantum effects in de Sitter space have focused
on either de Sitter invariant states or the special O(4) invariant state discovered
by Allen (1985) that occurs for the massless minimally coupled scalar field.
Some exceptions are studies of the behavior of the quantity〈φ2〉 for arbitrary
states (Linde, 1982; Starobinsky, 1982; Vilenkin and Ford, 1982), and a study
of the energy of excited states for scalar fields (Redmount, 1989). The most
general class of states for which the energy–momentum tensor is ultraviolet fi-
nite in a homogeneous and isotropic spacetime are fourth-order adiabatic states
(See for example, Birrel and Davies, 1982). It is important to consider this gen-
eral class of states because, unless the universe was expanding exponentially
when it began, it is very unlikely that the fields will be in de Sitter invariant
states.

In this paper, we investigate the asymptotic behavior of〈Tab〉 for quantized
scalar fields in arbitrary fourth-order adiabatic states in de Sitter space. The wave
equation for free scalar fields can be solved analytically in de Sitter space for
all values of the mass and the curvature coupling. Its solutions depend only on
the wave numberk of the mode and the parameterν2 = 9

4 −m2α2− 12ξ , with
R= 12α−2 the constant scalar curvature of de Sitter spacetime. For<(ν) < 3

2,
corresponding tom2+ ξR > 0, we prove that for all fourth-order adiabatic states
the renormalized value of〈Tab〉 at late times asymptotically approaches the value
it has if the field is in the Bunch–Davies state. The conformally invariant scalar
field (m= 0, ξ = 1

6) falls into this class.
The caseν = 3

2 corresponding tom2+ ξR= 0 is more complicated. In the
massless minimally coupled case we prove that〈Tab〉 for all physically admissible
states approaches the Allen–Folacci de Sitter invariant value (Allen and Folacci,
1987; Folacci, 1991a,b; Kirsten and Garriga, 1993). Numerical evidence for this
result was found previously in Habibet al. (2000). If m2 = −ξR 6= 0 then we
show that〈Tab〉 grows linearly in terms of cosmic (proper) time at late times. This
leads to an instability of de Sitter space.
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An instability also occurs for most values ofm andξ if ν > 3
2, corresponding

to m2+ ξR < 0. In these cases〈Tab〉 grows exponentially at late times for all
fourth-order adiabatic states in a state dependent manner.

The paper is organized as follows: In Section 2 we review the quantization
of free scalar fields in a general Robertson-Walker (RW) spacetime. In Section 3
we analyze the late time behavior of〈Tab〉 in de Sitter space for the caseν < 3/2.
The casesν = 3/2 andν > 3/2 are discussed in Sections 4 and 5, respectively. A
brief discussion of our results is given in Section 6.

2. SCALAR FIELD IN A ROBERTSON-WALKER BACKGROUND

The metric for a general RW spacetime can be written in the form

ds2 = a2(η)

(
−dη2+ dr2

1− κr 2
+ r 2dÄ2

)
. (2.1)

Hereη is the conformal time,a(η) is the scale factor, andκ = 0,+1,−1 corre-
sponds to the cases of flat, spherical, and hyperbolic spatial sections, respectively.
Throughout we use units such thath = c = 1 and the Misneret al. (1973) con-
ventions for the curvature tensors,Ra

bcd = 0a
bd,c − . . . andRab = Rc

acb.
We consider in this paper a free quantized scalar fieldφ with the quadratic

action

S= −1

2

∫
d4x
√−g[(∇aφ)gab(∇bφ)+m2φ2+ ξRφ2], (2.2)

where∇a denotes the covariant derivative,R is the scalar curvature, andg ≡
det (gab). The massm and curvature couplingξ are allowed to have any real value.
The wave equation forφ obtained by varying this action is

[−¤+m2+ ξR]φ(η, x) =
[

1

a4

∂

∂η

(
a2 ∂

∂η

)
− 1

a2
1(3)+m2+ ξR

]
φ = 0,

(2.3)

with1(3) the covariant spatial Laplacian. For spacetimes with the metric (2.1) the
field φ can be expanded as a mode sum in the form (Birrell and Davies, 1982)

φ(η, x) = 1

a(η)

∫
dµ̃(k)[akYk(x)ψk(η)+ a†kY∗k (x)ψ∗k (η)], (2.4)

where the integration measure is given by∫
dµ̃(k) ≡


∫

d3k if κ = 0,∫∞
0 dk

∑
l ,m if κ = −1,∑

k,l ,m if κ = +1,
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and the spatial part of the mode functionsYk(x) obeys the equation

−1(3)Yk(x) = (k2− κ)Yk(x), (2.5)

with k = 1, 2,. . . , in the case of closed spatial sections,κ = +1. The time depen-
dent part of the mode functionsψk obeys the equation

ψ ′′k +
[
k2+m2a2+

(
ξ − 1

6

)
a2R

]
ψk = 0, (2.6)

where primes denote derivatives with respect to the conformal time variableη, and
the scalar curvature in a general RW spacetime is given by

R= 6

(
a′′

a3
+ κ

a2

)
. (2.7)

For the quantum field to satisfy the canonical commutation relations, the cre-
ation and annihilation operators are required to obey the commutation relations
[ak , a†k′ ] = δkk ′ , whereupon theψk must obey the Wronskian condition

ψkψ
∗′
k − ψ∗kψ ′k = i . (2.8)

The unrenormalized expressions for the components of〈Tab〉 are given by
Bunch (1980)

εu = −
〈
T0

0

〉
u =

1

4π2a4

∫
dµ(k)(2nk + 1)

{
|ψ ′k|2+ (k2+m2a2)|ψk|2

+ (6ξ − 1)

[
a′

a
(ψkψ

∗′
k + ψ∗kψ ′k)−

(
a′2

a2
− κ

)
|ψk|2

]}
, (2.9a)

−εu + 3pu = 〈T〉u = 1

2π2a4

∫
dµ(k)(2nk + 1)

{
−m2a2|ψk|2+ (6ξ − 1)

×
[
−|ψ ′k|2+

a′

a
(ψkψ

∗′
k + ψ∗kψ ′k)

]
+ (6ξ − 1)

×
[
k2+m2a2+

(
a′′

a
− a′2

a2

)
+
(
ξ − 1

6

)
a2R

]
|ψk|2]

}
. (2.9b)

where we are considering states with an arbitrary number of particlesnk = 〈a†kak〉,
and the scalar measuredµ(k) is given by∫

dµ(k) ≡
{∫∞

0 dk k2 if κ = 0,−1,∑∞
1 k2 if κ = +1.
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As we are considering spatially homogeneous and isotropic initial states (consistent
with the RW symmetry),nk depends only on the magnitudek of the spatial wave
vectork.

Since〈Tab〉u is quartically divergent, a procedure for defining finite, renormal-
ized expectation values must be given. We will follow the adiabatic regularization
method (Fulling and Parker, 1974; Fullinget al., 1974; Parker, 1966; Parker and
Fulling, 1974). In this method the renormalization counterterms are constructed
using a fourth-order expansion for〈Tab〉. We denote these counterterms by〈Tab〉ad.
They are given in Anderson and Parker (1987) and Bunch (1980). The renormalized
expressions are then

〈Tab〉ren= 〈Tab〉u − 〈Tab〉ad. (2.10)

This subtraction scheme is not manifestly covariant in form, since space and time
are treated quite differently. However, adiabatic regularization is equivalent to
a covariant point splitting procedure in which the points are split only in the
spacelike hypersurface of constantη (Anderson and Parker, 1987; Birrell, 1978),
and thevaluesof the renormalized〈Tab〉 obtained by this procedure are the same
as in a strictly covariant one. Hence this subtraction procedure does correspond
to adjustment of counterterms to the quantum effective action, and〈Tab〉ren is
covariantly conserved. As discussed in detail in Anderson and Parker (1987), the
adiabatic terms in all cases consist of an integral rather than a sum overk. The
reason is that subtraction corresponds to purely local counterterms in the effective
action, and thus must be independent of the global compactness or noncompactness
of the spatial sections.

A useful variation of the method of adiabatic regularization has been devel-
oped by two of us (Anderson and Eaker, 2000). In this method one first computes
a quantity〈Tab〉d, obtained by expanding the adiabatic counterterms〈Tab〉ad in
inverse powers ofk and truncating at orderk−3. The same renormalized energy–
momentum tensor defined in Eq. (2.10) is separated into the sum of twofiniteterms
by adding and subtracting〈Tab〉d so that

〈Tab〉ren= 〈Tab〉n + 〈Tab〉an,

〈Tab〉n = 〈Tab〉u − 〈Tab〉d,

〈Tab〉an = 〈Tab〉d − 〈Tab〉ad. (2.11)

The full expressions for〈Tab〉d and 〈Tab〉an are given in Anderson and Eaker
(2000) for a general RW spacetime. The advantage of this splitting is that〈Tab〉n
and〈Tab〉an are separately conserved, and moreover,〈Tab〉an may be computed an-
alytically in terms of the scale factora(η) and its derivatives (Anderson and Eaker,
2000). Thus the state dependence of the renormalized〈Tab〉ren resides completely
in 〈Tab〉n, which can be computed numerically.
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3. <(ν) < 3/2

We now focus on the asymptotic evaluation of〈Tab〉 in de Sitter space. The ge-
ometry of de Sitter spacetime can de described in a number of different coordinate
systems. Ifκ = 0, the spatial sections are flat and the scale factor is

a(η) = −α
η

, −∞ < η < 0, κ = 0, (3.1)

with α a real, positive constant, andR= 12α−2. If κ = +1 then the scale factor is

a(η) = α secη, −π
2

< η <
π

2
, κ = +1, (3.2)

which is equivalent toa(η) = α cscη with 0 < η < π . Again R= 12α−2.
We shall use theκ = 0 coordinates in the analysis of the<(ν) < 3/2 case

and theκ = 1 coordinates for the casesν ≥ 3/2. No confusion should be caused
by our use of the same symbolη for conformal time in both cases of flat and closed
spatial sections, since these are treated separately.

For the case of Eq. (3.1) the general solution to the mode equation can be
written as (Bunch and Davies, 1978)5

ψk(η) = 1

2
(−πη)

1
2 e

i νπ
2
[
c1(k)H (1)

ν (−kη)+ c2(k)H (2)
ν (−kη)

]
, (3.3)

where theH (1),(2)
ν are Hankel functions and

ν2 ≡ 9

4
−m2α2− 12ξ. (3.4)

Whenν2 > 0 we will chooseν to be the positive root of (3.4). From Eq. (3.3) we
see that solutions to the mode equation in de Sitter space depend onm andξ only
through their dependence on the parameterν. Note that because of the minus sign
in the arguments of the Hankel functions, it is the functionH (1)

ν that corresponds to
a positive frequency mode in the largek limit. The normalization of the mode func-
tion in (3.3) has been chosen so that the Wronskian condition (2.8) becomes simply

|c1(k)|2− |c2(k)|2 = 1. (3.5)

The Bunch–Davies state is defined by the choice,c1 = 1 andc2 = 0 (with nk = 0)
for all k. The renormalized value of〈Tab〉 in the Bunch–Davies state is (Bunch and
Davies, 1978; Dowker and Critchley, 1976)

〈Tab〉BD = − gab

64π2

{
m2

[
m2+

(
ξ − 1

6

)
R

][
ψ

(
3

2
+ ν

)
+ ψ

(
3

2
− ν

)
5 In Bunch and Davies (1978), the arguments of the Hankel functions are given askη rathen than−kη.
We have chosen to use nonnegative arguments to avoid complications that result from the fact that
these functions have branch cuts along the negative real axis.
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− log

(
12m2

R

)]
−m2

(
ξ − 1

6

)
R− 1

18
m2R

− 1

2

(
ξ − 1

6

)2

R2+ R2

2160

}
, (3.6a)

whereψ(z) = d log0(z)
dz is the digamma function.

For the general state withc2 6= 0 to remain fourth-order adiabatic, we must
have for large values ofk

c2(k) = C(k)

k4
, (3.7)

for some complex functionC(k) which vanishes in the limitk→∞. This condition
is necessary for an arbitrary (spatially homogeneous ) state to posses a finite
energy–momentum tensor after the fourth-order adiabatic subtraction defined by
(2.10). Likewise the same condition of finite〈Tab〉 requires us to restrict the average
number of particles〈a†kak〉 = nk by

nk = N(k)

k4
, (3.8)

for some real functionN(k) which vanishes in the limitk→∞. The two ultraviolet
conditions

lim
k→∞
|C(k)| = lim

k→∞
N(k) = 0, (3.9)

on the physically allowed states guarantee that the Green’s function for the scalar
field is locally of the Hadamard form (Junker, 1995, Linding, 1999; L¨uders and
Roberts, 1999; Najmi and Ottewill, 1985), and that the divergences of〈Tab〉match
those of the fourth-order adiabatic vacuum, and are removed by the adiabatic
subtraction procedure.

To understand why the Bunch–Davies state serves as an attractor state let us
observe that at late timesη→ 0−, the general state mode function (3.3) behaves
like

ψk ∼ (−η)
1
2−ν ∼ aν−

1
2 . (3.10)

Substituting this into (2.9a) and (2.9b) shows that to leading order at late times
the contributions to the mode sums of〈Ta

b 〉u behave like (−η)3−2ν ∼ a2ν−3 for ν
real. Since the renormalization counterterms are state independent (Bunch, 1980),
the state dependent terms are the same in the unrenormalized and renormalized
quantities. One can perform all the UV renormalization in the Bunch–Davies state
at a fixed time and collect the remaining finite state dependent terms which are
unaffected by the subtraction procedure, and they all fall off at least as fast as
(−η)3−2ν asη→ 0− for <(ν) < 3

2.
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To prove this result we first note that for an arbitrary fourth-order adiabatic
state we can make use of Eq. (3.5) to show that

〈Tab〉ren= 〈Tab〉BD + 〈Tab〉SD, (3.11)

where 〈Tab〉SD is composed of finite state dependent terms, depending on the
coefficientsc1(k), c2(k), andnk. It may be expressed as an integral over the wave
numberk in the form

〈Tab〉SD = 1

4π2

∫ ∞
0

dk Iab(k, η). (3.12)

The leading order contributions toI a
b at late times are the same as those for〈Ta

b 〉u
discussed above. Thus they go like (−η)3−2ν . To find the asymptotic behavior of
〈Ta

b 〉SD one must first compute the mode integral and then take the limitη→ 0−.
We proved in Andersonet al. (2000) that it is possible to interchange the order of
these operations. SinceI a

b vanishes at late times for all values ofk it is then clear
that〈Ta

b 〉SD do as well. Therefore, for an arbitrary fourth-order adiabatic state and
for <(ν) < 3/2〈Ta

b 〉 asymptotically approaches the values they would have if the
field was in the Bunch–Davies state.

4. ν = 3/2

To treat the caseν = 3/2 carefully, it is easiest to work with closed spatial
sections and a discrete set of mode functions in order to treat the most infrared
sensitive, spatially homogeneousk = 1 mode separately from the rest, instead of
dealing with an infrared sensitive continuous mode integral. The scale factor for
κ = +1 is given by Eq. (3.2). The general solution of the mode equation (2.6) is

ψk(η) = αk fk(η)+ βk f ∗k (η), (4.1)

with

fk(η) = e−ikη

[2k(k2− 1)]
1
2

(k+ i tanη), k = 2, 3,. . . , (4.2)

The Wronskian condition

fk f ∗′k − f ∗k f ′k = i , (4.3)

gives

|αk|2− |βk|2 = 1. (4.4)

The Bunch–Davies state is given byαk = 1 andβk = 0.
In Eq. (4.2), thek = 1 mode function is singular. Thus it must be treated

separately if the two-point function is to be free of infrared divergences. The
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behavior of thek = 1 mode is

ψ1(η) = secη

[
A

2
(η + sinη cosη)+ B

]
(4.5)

and its normalization is

A∗B− B∗A = i . (4.6)

It has been shown that ifν = 3/2 then the quantity〈φ2〉grows linearly in terms
of cosmic timet with dt = adη (Allen and Folacci, 1987; Linde, 1982; Vilenkin
and Ford, 1982). The same type of behavior occurs for the nonzero components
of 〈Ta

b 〉 if m2α2 = −12ξ 6= 0. To see this one can use Eq. (2.11) to divide the
energy–momentum tensor into a state dependent part〈Tab〉n and a state independent
part〈Tab〉an. They are separately conserved and explicit expressions for them in a
general RW spacetime are given in Anderson and Eaker (2000). The quantity〈Tab〉n
can be computed by substituting Eqs. (4.1), (4.2), and (4.5) into Eqs. (2.9a) and
(2.9b) and subtracting the relevant expressions for〈Tab〉d that are given in Anderson
and Eaker (2000). We find that〈Tab〉n approaches a state dependent constant in the
limit η→ π/2. We also find that the quantity〈Tab〉an has the asymptotic behavior

〈Tab〉an→ gab
3ξ

4π2α4
log(µa)→ gab

3ξ t

4π2α5
(4.7)

Thus the nonzero components of〈Ta
b 〉ren diverge in a state independent manner as

η→ π/2.
In the important case thatm= ξ = 0, two surprising results occur. First from

Eq. (4.7) it is seen that〈Tab〉an does not diverge asymptotically. Second〈Tab〉n
does not approach a state dependent constant. To see why the latter result occurs,
it is useful to introduce the de Sitter invariant energy–momentum tensor found
by Allen and Folacci (Allen and Folacci, 1987; Folacci, 1991a,b; Kirsten and
Garriga, 1993). One can derive the expression for their energy–momentum tensor
by not including thek = 1 mode in the mode sum, choosing the Bunch–Davies
state,αk = 1 andβk = 0 for the modes withk > 1, and substituting the resulting
expressions into Eq. (2.10). The result is

〈Tab〉AF = gab
119R2

138240π2
. (4.8)

Using Eqs. (4.4), (2.9a), and (2.9b) we then find that for a general state (including
the contribution of thek = 1 mode)

ε = −〈T0
0

〉
ren

= −〈T0
0

〉
AF + (1+ 2n1)

|A|2 cos6 η

π2α4
+ 1

4π2α4

∞∑
k=2

{
[2nk + 2(1+ 2nk)



P1: GFU/GVM

International Journal of Theoretical Physics [ijtp] PP238-343986 November 1, 2001 9:42 Style file version Nov. 19th, 1999

2226 Anderson, Eaker, Habib, Molina-Parı́s, and Mottola

× |βk|2]

[
k3 cos4 η + k

(
−cos4 η + 1

2
cos2 η

)]
+ (1+ 2nk)

×
[
(βkα

∗
k e2ikη + β∗kαk e−2ikη)k

(
− cos4 η + 1

2
cos2 η

)
+ i (βkα

∗
k e2ikη − β∗k e−2ikη)k2 cos3 η sinη

]}
, (4.9a)

〈T〉ren= 〈T〉AF + (1+ 2n1)
2|A|2 cos6 η

π2α4
− 1

4π2α4

∞∑
k=2

{[2nk + 2(1+ 2nk)

× |βk|2] k cos2 η + (1+ 2nk)[(βkα
∗
k e2ikη + β∗kαk e−2ikη)(−2k3 cos4 η

+ k cos2 η)+ 2i (βkα
∗
k e2ikη − β∗kαk e−2ikη)k2 cos3 η sinη}. (4.9b)

Provided thek sums converge, it is clear that all the state dependent terms
contain at least one factor ofa−2 = α−2 cos2 η, and so vanish in the limit ofη→ π

2 .
However, the requirement that the state be fourth-order adiabatic just guarantees
this convergence, for the same reason as in the previous analysis in spatially flat
coordinates. Indeed we have

|βk| = C(k)

k4
,

nk = N(k)

k4
, (4.10)

for someC(k) andN(k) that vanish ask→∞. This is sufficient to guarantee the
absolute convergence of all terms in the sums. Since all state dependent terms are
multiplied by at least two powers of cosη = α/a, which vanishes in the late time
limit η→ π

2 , we conclude that any fourth-order adiabatic state of the massless,
minimally coupled scalar field for which the two-point function is infrared finite,
has an energy–momentum tensor which approaches the AF value,〈Tab〉AF in the
late time limitη→ π

2 .

5. ν > 3/2

For ν > 3/2, we again use theκ = 1 coordinates. The mode functions are
of the form (4.1) with the normalization (4.4). In Andersonet al. (2000), it was
shown that

fk(η) =
[
0
(
k+ 1

2 + ν
)
0
(
k+ 1

2 − ν
)

2

] 1
2 e−ikη

k!

× F

(
1

2
+ ν, 1

2
− ν; k+ 1;

1− i tanη

2

)
, (5.1)
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whereF is the hypergeometric function. For all real values ofν

fk

(
η→ π

2

)
→
[
0
(
k+ 1

2 − ν
)

20
(
k+ 1

2 + ν
)] 1

2
0(2ν)

0
(

1
2 + ν

) (−i )k

k!

(
i secη

2

)ν− 1
2

. (5.2)

Thus the modes grow likeaν−
1
2 at late times which implies that the leading order

terms in〈Ta
b 〉 grow likea2ν−3 at late times. Therefore〈Ta

b 〉 diverges exponentially
in terms of the cosmic time,t , in a state dependent manner unless the leading
order terms cancel. In Andersonet al.(2000), it was shown that this occurs for the
following values ofm andξ for a given value ofν

m2α2 = −ν(2ν − 3)(2ν − 1)

4(ν − 2)
,

ξ = (2ν − 3)

8(ν − 2)
. (5.3)

The next to leading order terms in〈Ta
b 〉 go like a2ν−5 so if ν > 5/2, 〈Ta

b 〉 still
diverges exponentially unless the coefficient of the next to leading order terms
also vanishes.

6. SUMMARY AND DISCUSSION

We have shown that in the case<(ν) < 3/2 the Bunch–Davies state serves
as a fixed point attractor for the energy–momentum tensor in the sense that, for
an arbitrary fourth-order adiabatic state,〈Tab〉 approaches the value it would have
if the field was in the Bunch–Davies state. This is a striking result. Certainly
no such attractor behavior of〈Tab〉, independent of initial conditions occurs in
Minkowski space for any mass. One may regard this result as a kind of cosmic
“no hair” theorem for scalar quantum fields in de Sitter space. It is in accord with
one’s classical intuition that any initial energy density satisfying the weak energy
condition (ε + p > 0) is redshifted away by the exponential de Sitter expansion. At
asymptotically late times what is left behind is a kind of frozen “quantum vacuum
energy condensate,” satisfying the de Sitter invariant equation of statep = −ε.
This result justifies the choice of the Bunch–Davies vacuum in calculations of
quantum fluctuations offreefields, i.e., without backreaction, in a long-lived de
Sitter expansion phase of inflationary cosmological models.

For ν = 3/2, we have shown that ifm2α2 = −12ξ 6= 0, the nonvanishing
components of〈Ta

b 〉 diverge linearly with respect to cosmic time at late times indi-
cating the existence of a quantum instability. For the casem= ξ = 0, the energy–
momentum tensor does not asymptotically diverge. Instead, for any fourth-order
adiabatic state for which the two-point function is infrared finite,〈Ta

b 〉 asymptot-
ically approaches the de Sitter invariant value found by Allen and Folacci (Allen
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and Folacci, 1987; Folacci, 1991a,b; Kirsten and Garriga, 1993). There are two
reasons for this surprising result. One is that the coefficient of the asymptotically
divergent terms in〈Ta

b 〉 vanishes ifm= ξ = 0. The other is that the coefficient
of the leading order (at late times) mode contributions to〈Ta

b 〉 also vanishes if
m= ξ = 0.

Finally, for the caseν > 3/2 we find that, for most values ofm andξ , the
nonzero components of〈Ta

b 〉 diverge exponentially in proper time at late times in
a state dependent manner for an arbitrary fourth-order adiabatic state.

The divergent behavior of the energy–momentum tensor found forν > 3/2
is of exactly the same type as that found for the energy–momentum tensor of
classical scalar fields with the same values ofm andξ (Dolgov, 1983; Ford, 1987).
However, the fact that the effective mass of the field, which is equal tom2α2+ ξR,
is tachyonic in this case and the fact that eitherm2 or ξ must be negative means that
the resulting instability of de Sitter space is probably of little physical relevance. A
similar observation applies to the instability found forν = 3/2. Here the effective
mass is zero, but it is still necessary to have a negative value for eitherm2 or ξ .
However, it is possible that a similar divergence of the energy–momentum tensor
for gravitons occurs in de Sitter space. The reason is that in any RW spacetime
the mode equation for gravitons in a particular gauge is identical to that for the
massless minimally coupled scalar field (Grishchuk, 1974). Work is currently in
progress to calculate the energy–momentum tensor for gravitons in de Sitter space
in order to determine if such an instability exists.
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